

परमाणु ऊर्जा शिक्षण संस्था

(परमाणु ऊर्जा विभाग का स्वायत्त निकाय, भारत सरकार)

ATOMIC ENERGY EDUCATION SOCIETY

(An autonomous body under Department of Atomic Energy, Govt. of India)

Chapter 6. Application Of Derivatives

Module-1 *e-content*

Increasing and Decreasing Functions

Let f be a real valued function defined in an interval D (a subset of R), then

f is called an increasing function in an interval D_1 (a subset of D) iff for all $x_1, x_2 \in D_1$, $x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$ and

f is called a strictly increasing function in D_1 iff for all $x_1, x_2 \in D_1$, $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$.

Analogously, f is called a decreasing function in an interval D_2 iff for all $x_1, x_2 \in D_2$, $x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2)$ and

f is called a strictly decreasing function in D_2 iff for all $x_1, x_2 \in D_2$, $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$.

For graphical representation of increasing and decreasing functions see figure shown below:

- **Definition:-** Let x_0 be a point in the domain of definition of a real valued function f.
- Then f is said to be increasing, strictly increasing, decreasing or strictly decreasing at x_0 if there exists an open interval I containing x_0 such that f is increasing, strictly increasing, decreasing or strictly decreasing, respectively, in I.
- A function f is said to be increasing at x_0 if there exists an interval $I = (x_0 h, x_0 + h), h > 0$ such that for $x_1, x_2 \in I$.

•
$$x_1 < x_2 \text{ in } I \Rightarrow f(x_1) \le f(x_2)$$

• Similarly, the other cases can be clarified.

Theorem 1. If a function f is continuous in [a,b], and derivable in (a,b) and

 $f'(x) \ge 0$ for all $x \in (a, b)$, then f is increasing in [a, b].

f'(x) > 0 for all $x \in (a, b)$, then f is strictly increasing in [a, b].

Theorem 2. If a function f is continuous in [a, b], and derivable in (a, b) and

i) $f'(x) \le 0$ for all $x \in (a,b)$, then f is decreasing in [a,b]. ii) f'(x) < 0 for all $x \in (a,b)$, then f is strictly decreasing in [a,b].

If f'(x) = 0 for all $x \in (a, b)$, then f is a constant function in [a, b].

Remark:- The formal proofs of these theorems are based on Lagrange's Mean Value Theorem.

Corollary:- If a function f is continuous in [a, b], and derivable in (a, b) and

f'(x) > 0 for all x in (a, b) except for a finite number of points where f'(x) = 0, then f(x) is strictly increasing in [a, b].

f'(x) < 0 for all x in (a, b) except for a finite number of points where f'(x) = 0, then f(x) is strictly decreasing in [a, b].

Example 1. Prove that the function $f(x) = x^3 - 6x^2 + 15x - 18$ is strictly increasing on R.

• Solution:- Given
$$f(x) = x^3 - 6x^2 + 15x - 18$$
, $D_f = R$

Differentiating it with respect to x, we get

•
$$f'(x) = 3x^2 - 12x + 15 = 3(x^2 - 4x + 5)$$

$$=3[(x-2)^2+1] \ge 3$$

$$\Rightarrow f'(x) > 0 \text{ for all } x \in R$$

 $\Rightarrow f(x)$ is strictly increasing function for all $x \in R$.

Example:-2. Show that the function $f(x) = x^2 - 3x + 1$ is neither increasing nor decreasing on (0,3).

- Solution: Given $f(x) = x^2 3x + 1 \Rightarrow f'(x) = 2x 3$.
- Now f'(x) > 0 when 2x 3 > 0 i. e when $x > \frac{3}{2}$
- \Rightarrow the given function is increasing in $\left[\frac{3}{2}, \bowtie\right)$.
- And f'(x) < 0 when 2x 3 < 0 i. e when $x < \frac{3}{2}$
- \Rightarrow the given function is decreasing in $(-\bowtie, \frac{3}{2}]$.
- Hence, in particular, the given function is increasing in $\left[\frac{3}{2}, 3\right)$ and decreasing in $\left[0, \frac{3}{2}\right]$
- Therefore, it is neither increasing nor decreasing on (0,3).

Example 3. Find the intervals in which the function f given by

$$f(x) = \frac{4 \sin x}{2 + \cos x} - x, \quad 0 \le x \le 2\pi, is$$
i) Strictly increasing
ii) strictly decreasing

• Solution:-Given
$$f(x) = \frac{4 \sin x}{2 + \cos x} - x$$
, $0 \le x \le 2\pi$

It is differentiable for all $x \in [0,2\pi]$.

$$f'(x) = \frac{(2+\cos x)4\cos x - 4\sin x (-\sin x)}{(2+\cos x)^2} - 1 = \frac{8\cos x + 4(\cos^2 x + \sin^2 x) - (2+\cos x)^2}{(2+\cos x)^2}$$

•
$$f'(x) = \frac{8\cos x + 4 - 4 - \cos^2 x - 4\cos x}{(2 + \cos x)^2} = \frac{4\cos x - \cos^2 x}{(2 + \cos x)^2} = \frac{(4 - \cos x)\cos x}{(2 + \cos x)^2}$$

•
$$f'(x) = \frac{(4-\cos x)\cos x}{(2+\cos x)^2}$$

We note that $-1 \le \cos x \le 1$, for all $x \in [0,2\pi]$

$$\Rightarrow 1 \ge -\cos x \ge -1$$
, for all $x \in [0,2\pi]$

$$\Rightarrow$$
 5 \geq 4 $-\cos x \geq$ 3, for all $x \in [0,2\pi]$

$$\Rightarrow 4 - \cos x > 0$$
, also $(2 + \cos x)^2 > 0$, for all $x \in [0, 2\pi]$

$$\therefore \frac{(4-\cos x)}{(2+\cos x)^2} > 0 , for all x \in [0,2\pi]$$

f is strictly increasing iff f'(x) > 0

$$\Rightarrow \frac{(4-\cos x)\cos x}{(2+\cos x)^2} > 0 \Rightarrow \cos x > 0$$

$$\Rightarrow x \in \left[0, \frac{\pi}{2}\right] \cup \left[\frac{3\pi}{2}, 2\pi\right]$$

 \therefore f is strictly increasing in $\left[0,\frac{\pi}{2}\right] \cup \left[\frac{3\pi}{2},2\pi\right]$.

f is strictly decreasing iff f'(x) < 0

$$\Rightarrow \frac{(4 - \cos x) \cos x}{(2 + \cos x)^2} < 0 \Rightarrow \cos x < 0$$
$$\Rightarrow x \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$$

 \therefore f is strictly decreasing in $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$.

THANK YOU

Prepared by Danavath Krishna PGT, AECS-1, JADUGUDA